LES VOLUMES ET LES GRANDEURS

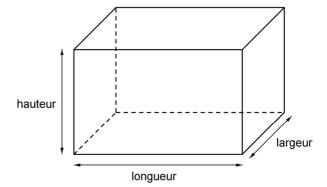
I) Les volumes :

1) Rappel:

A) Le pavé droit ou parallélépipède rectangle :

Le volume d'un pavé droit est égal au produit de sa longueur, de sa largeur et de sa hauteur.

 $V = longueur \times largeur \times hauteur$



Exemple:

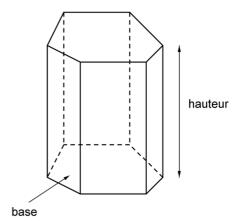
Calculer le volume d'un pavé droit de 12 cm de longueur, de 7 cm de largeur et de 5 cm de hauteur.

B) Le volume d'un prisme droit:

Le volume d'un prisme droit est égal au produit de l'aire de sa base et de sa

hauteur.

 $V = aire de la base \times hauteur$



Exemple:

Calculer le volume d'un prisme droit de base, un triangle rectangle dont les deux côté de l'angle droit mesurent 8 cm et 9 cm, et de hauteur 11 cm.

C) Le volume d'un cylindre de révolution :

Le volume d'un cylindre de révolution est égal au produit de l'aire de son disque de base et de sa hauteur.

hauteur

 $V = aire du disque de base \times hauteur$

Exemple:

Calculer le volume d'un cylindre de révolution dont le rayon de la base mesure 6 cm et de hauteur 7 cm. (On donnera l'arrondi au cm³).

disque de base

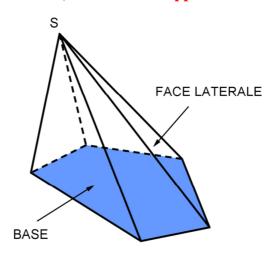
2) La pyramide:

A) Définition:

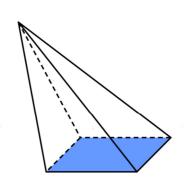
Une pyramide est un solide dont :

- une face est un polygone : on l'appelle base.
- les autres faces sont des triangles: on les appelle faces latérales.
- les côtés communs à deux des faces sont les arêtes.
 En particulier, les côtés communs à deux des faces latérales sont les arêtes latérales.

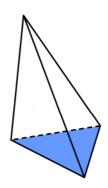
Dans une pyramide, il y a plusieurs sommets : les sommets de la base et le point d'intersection des faces latérales, ce dernier est appelé le sommet de la pyramide.



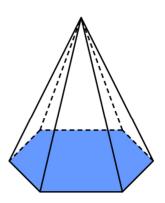
Exemples de pyramide:



PYRAMIDE A BASE CARREE



PYRAMIDE A BASE TRIANGULAIRE
APPELEE TETRAEDRE



PYRAMIDE A BASE HEXAGONALE

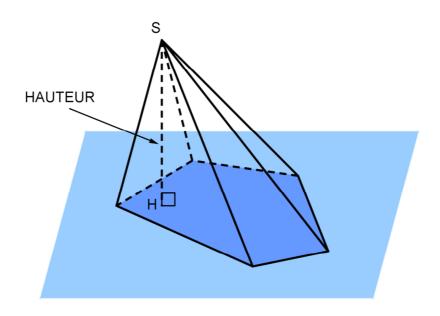
B) Hauteur d'une pyramide :

<u>Définition</u>:

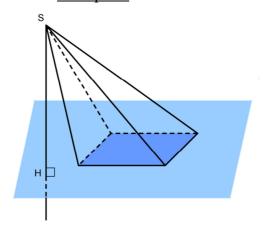
Soit une pyramide de sommet S

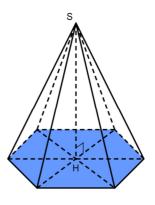
Soit H le point du plan de base tel que la droite (SH) est perpendiculaire à ce plan.

La hauteur de la pyramide est le segment [SH]. On appelle aussi hauteur la distance SH (c'est-à-dire la longueur du segment [SH]).



Exemples:





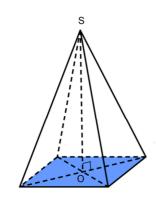
C) Pyramide régulière :

Définition :

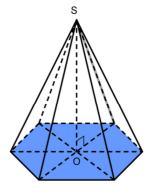
Une pyramide de sommet S est régulière si :

- sa base est un polygone régulier de centre O
- sa hauteur est le segment [SO]

Exemples:



PYRAMIDE REGULIERE A BASE CARREE



PYRAMIDE REGULIERE A BASE HEXAGONALE

D) Volume d'une pyramide :

Le volume d'une pyramide est égale à $\frac{1}{3}$ de l'aire de sa base multipliée par sa hauteur.

$$\mathbf{V} = \frac{1}{3} \times \mathbf{B} \times \mathbf{h}$$

où B est l'aire de la base et h la hauteur

Exemple:

Calculer le volume, en cm³, d'une pyramide à base carrée de côté 5 cm et de hauteur 18 cm.

3) Le cône de révolution :

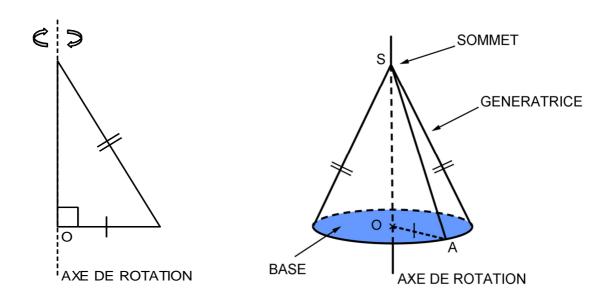
A) Définition:

Un cône de révolution est le solide obtenu en faisant tourner un triangle rectangle autour d'un des côtés de son angle droit.

Un cône de révolution est formé :

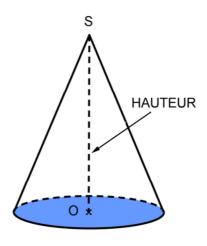
- d'un disque appelé base
- d'une surface courbe appelée face latérale
- d'un point appelé sommet du cône

Le segment joignant le sommet du cône et un point du cercle définissant le disque de base est appelée une génératrice.



B) Hauteur d'un cône de révolution :

La hauteur d'un cône de révolution est le segment joignant son sommet au centre du disque de base. On appelle aussi la longueur de ce segment.



C) Volume d'un cône :

Le volume d'un cône est égale à $\frac{1}{3}$ de l'aire de sa base multipliée par sa hauteur.

$$\mathbf{V} = \frac{1}{3} \times \mathbf{B} \times \mathbf{h}$$

où B est l'aire du disque la base et h la hauteur

Exemple:

Calculer le volume, en cm³, d'un cône de hauteur 11 cm et dont le rayon du disque de base mesure 4 cm (on donnera l'arrondi au dixième).

II) Changement d'unités :

 a) Le 5 décembre 1989, la rame 325 du TGV Atlantique bat le record du monde de vitesse sur rail en atteignant la vitesse de 8040 m/min.
 Exprimer la vitesse de ce record en km/h et en m/s.

b) Une antilope peut courir à la vitesse moyenne de 28 m/s. Exprimer cette vitesse en km/h.

c) Un lévrier court à la vitesse moyenne de 72 km/h. Exprimer cette vitesse en m/s.

d) Le débit de la pompe du système de filtration d'une piscine est de 152 litres/min. Exprimer ce débit en m³/h.

Conversions:

1 litre =
$$1 \text{ dm}^3$$
 1000 litres = 1 m^3
1h = 60 min = 3600 s 1 min = 60 s
1 km = 1000 m

Remarque:

Pour passer de km/h à m/s, on divise par 3,6. Pour passer de m/s à km/h, on multiplie par 3,6.

: 3,6
$$\bigvee$$
 vitesse en m/s \bigvee x 3,6 \bigvee vitesse en km/h

IV) Grandeurs:

1) Grandeurs simples:

Certaines grandeurs sont mesurables, on dit que ce sont des grandeurs simples.

Exemples:

La longueur d'un segment, le temps, la masse

2) Grandeurs composées :

A) Grandeur produit:

Une grandeur produit s'obtient en faisant un produit de grandeurs.

Exemples:

Aire d'un rectangle = $longueur \times largeur$

Distance = vitesse \times temps

Volume d'une pyramide = $\frac{1}{3} \times$ aire de la base \times hauteur

B) Grandeur quotient:

Une grandeur quotient s'obtient en faisant le quotient d'une grandeur par une autre grandeur.

Exemples:

$$Vitesse = \frac{distance}{temps} \qquad Temps = \frac{distance}{vitesse} \qquad D\'ebit = \frac{volume}{temps}$$

Densité de population
$$=\frac{\text{nombre d'habitants}}{\text{superficie du territoire}}$$

Masse volumique =
$$\frac{\text{masse}}{\text{volume}}$$

C) Remarque:

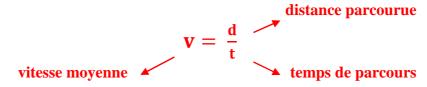
Pour le calcul de grandeurs composées, il faut faire très attention aux unités.

D) Applications:

3) Vitesse moyenne, distance et temps :

A) Vitesse moyenne:

La vitesse moyenne v d'un mobile est le quotient de la distance parcourue d par le temps de parcours t.



Exemple:

Un athlète a couru 400 mètres en 50 secondes.

Quelle a été sa vitesse moyenne?

B) Distance:

La distance parcourue d par un mobile est le produit de la vitesse moyenne v et du temps de parcours t.

$$\mathbf{d} = \mathbf{v} \times \mathbf{t}$$

Justification:

$$\begin{aligned} v &= \frac{d}{t} & \text{donc } \frac{v}{1} = \frac{d}{t} \text{, effectuons un produit en croix } d = \frac{v \times t}{1} \\ \text{et donc } & d = v \times t \text{.} \end{aligned}$$

Exemple:

Une voiture a roulé deux heures et demie à la vitesse de 70 km/h. Quelle distance a-t-elle parcourue ?

C) Temps:

Le temps de parcours t d'un mobile est le quotient de la distance parcourue d par la vitesse moyenne v.

$$t = \frac{d}{v}$$

Justification:

$$v = \frac{d}{t}$$
 donc $\frac{v}{1} = \frac{d}{t}$, effections un produit en croix $t = \frac{d \times 1}{v}$ et donc $t = \frac{d}{v}$.

Exemple:

Un motard a effectué 2500 mètres à la vitesse de 20 m/s. En combien de temps, le motard a-t-il parcouru ces 2500 mètres ?

D) Remarque:

Attention

2 h 30 min correspond à 2,5 h. 2 h 15 min correspond à 2,25 h. 2 h 45 min correspond à 2,75 h.

E) Application à la VMA (EPI):

Lors de son test VMA, Adrien s'est arrêté au 62^{ème} plot.

a) Calculer sa VMA.
 (Durée : 6 minutes, distance entre deux plots : 20 mètres).

b) Combien de plots doit-il dépasser, par minute, pour une vitesse de 110% de sa VMA ?