LES PROBABILITES

I) Définitions:

1) Expérience aléatoire:

Une expérience est dite aléatoire lorsqu'on ne peut pas prévoir avec certitude le résultat.

Exemple:

On lance une pièce de 1 € et on observe le côté qu'elle présente une fois retombée.

Le résultat est soit pile soit face : on ne peut pas savoir avant d'avoir jeté la pièce. C'est une expérience aléatoire.

2) Issue:

Chaque résultat possible d'une expérience aléatoire est appelé une issue.

Exemple:

Reprenons l'exemple précédent, l'expérience aléatoire a deux issues :

- pile
- face

3) Evénement:

Un événement est constitué d'une ou plusieurs issues d'une expérience aléatoire.

Exemple:

On jette un dé cubique dont les faces sont numérotées de 1 à 6 et on note le numéro inscrit sur la face supérieure du dé.

Soit l'événement A : « obtenir un nombre pair »

$$A = \{2;4;6\}$$

L'événement A est constitué de trois issues.

Soit l'événement B : « obtenir le 5 »

$$\mathbf{B} = \{ 5 \}$$

L'événement B est constitué d'une issue.

II) Introduction aux probabilités :

1) Activité:

2) Interprétation:

Pour déterminer (voire approcher), la probabilité d'une issue ou d'un événement, on répète un très grand nombre de fois l'expérience aléatoire. La fréquence d'apparition de l'issue ou de l'événement tendra à se stabiliser sur la valeur de la probabilité.

3) Autres approches:

- considération de symétrie

 On jette un dé cubique non truqué. Pour des raisons de symétrie liées aux propriétés du cube, on a le même nombre de chances d'obtenir chaque face du dé. Comme il y a six faces, la probabilité d'obtenir chaque face est $\frac{1}{6}$.
- Considération de comparaison
 Une urne contient 7 boules : 4 rouges, 2 vertes et 1 bleue.
 On tire au hasard une boule de l'urne. Par comparaison, on a quatre chances sur 7 de tirer une boule rouge, 2 chances sur 7 de tirer une boule verte et 1 chance sur 7 de tirer une boule bleue.

III) Calcul de probabilités :

1) Définition :

La probabilité d'un événement est égale à la somme des probabilités des issues qui le constituent.

2) Propriété 1:

Lors d'une expérience aléatoire, la somme des probabilités de toutes les issues est égale à 1.

Pour tout événement A,

$$0 \le P(A) \le 1$$

3) Propriété 2:

Lors d'une expérience aléatoire, quand toutes les issues ont la même probabilité, on dit qu'il s'agit d'une situation d'équiprobabilité.

La probabilité d'un événement A, notée P(A) est alors

$$P(A) = \frac{\text{nombres d'issues constituant A}}{\text{nombre total d'issues}}$$

Exemples:

a) On lance un dé cubique, non truqué, dont les faces sont numérotées de 1 à 6.

Calculer la probabilité de l'événement A: « obtenir un nombre pair ».

b) On lance un dé cubique truqué dont les faces sont numérotées de 1 à 6. La probabilité d'apparition de chaque face est donnée dans le tableau suivant :

Face	1	2	3	4	5	6
Probabilité	0,181	0,198	0,160	0,154		0,175

- 1) Calculer P(5).
- 2) Calculer la probabilité de l'événement A: « obtenir un nombre impair ».